BioFluid Dynamics Laboratory

Visit Website

The BioFluid Dynamics Laboratory's research involves the dynamics of drops and bubbles in microfluidics and porous media, hemodynamics and hemopathology in the microcirculation, dynamics of synthetic and biological polymers, and the development of novel computational methodologies for the accurate and efficient study of these physical systems. The lab's recent projects have included computational studies on drop dynamics; the development of interfacial spectral boundary methods for deformable particles such as droplets, capsules, red blood cells and vesicles; the behavior and deformation of artificial capsules and erythrocytes in high flow-rate environments; the effects of paraproteinemia and malaria on the motion of the erythrocytes in the microcirculation; and the development of a computationally efficient cytoskeleton-based continuum erythrocyte algorithm.

Panagiotis (Panos) Dimitrakopoulos

Associate Professor
301-405-8166 |