
Spindles, Cusps, and Bifurcation for Capsules in Stokes Flow

W.R. Dodson III1 and P. Dimitrakopoulos2,*
1Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA

2Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
(Received 26 April 2007; revised manuscript received 11 June 2008; published 12 November 2008)

Interfacial dynamics of membrane-enclosed fluid volumes in viscous flows is complicated due to the

coupling of the fluid dynamics with the membrane properties. Based on computational investigation via

our interfacial spectral boundary element algorithm, our study shows that a (strain-hardening) Skalak-type

capsule in a planar extensional Stokes flow develops steady-state shapes whose edges from spindled

become cusped with increasing flow rate owing to a transition of the edge tensions from tensile to

compressive. A bifurcation in the steady-state shapes is also found (i.e., existence of both spindled and

cusped edges for a range of high flow rates) by implementing different transient processes, owing to the

different evolution of the membrane tensions.
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The study of the interfacial dynamics of artificial or
physiological capsules (i.e., membrane-enclosed fluid vol-
umes) in Stokes flow has seen an increased interest during
the last few decades due to their numerous engineering and
biomedical applications. Artificial capsules are commonly
used in the pharmaceutical, food, and cosmetic industries
for the controlled release of medical agents, aromas, or
flavors [1]. In addition, the motion of red blood cells
through vascular microvessels has long been recognized
as a fundamental problem in physiology and biomechanics
[2]. In this work, we restrict our interest to elastic mem-
branes with shearing and area-dilatation resistance but
negligible bending resistance. This class represents a
wide range of artificial capsules. Experimental findings
for biocompatible alginate capsules [3], synthetic polysi-
loxane [4], and aminomethacrylate capsules [5] compare
very well with theoretical models that ignore bending
resistance.

Current understanding of capsule dynamics at high flow
rates is rather limited. Experimental findings have sug-
gested a wealth of possible configurations, including stable
steady-state shapes whose edges become rounded, then
more extended but still concave (i.e., spindled), and finally
cusped as the flow rate increases as shown in Fig. 6 of the
work by Barthès-Biesel [6] and included here in Fig. 1(b).
(It is of interest to note that the cusped shape at high flow
rates reveals that the membrane has negligible bending
resistance.) The transition from spindled-to-cusped edges
may also be expected based on the similar transition found
for low-viscosity drops or bubbles [7]. Existing analytical
and computational studies are unable to predict (and thus
provide physical insight on) the spindled and cusped inter-
facial shapes observed in experiments. The asymptotic
solutions for initially spherical capsules by Barthès-
Biesel and co-workers are restricted to small deformations
[8]. The state of the art (low-order) three-dimensional
computational methodologies are unable to find stable
steady-state capsule shapes at high flow rates. These meth-

odologies either predict interfacial breaking even at mod-
erate flow rates [9,10] or are restricted to moderate
interfacial deformations with rounded shapes [11].
To contribute to the physical understanding in this area,

we utilize our interfacial spectral boundary element algo-
rithm for capsules with elastic tensions [12] to study large
deformations, in a planar extensional Stokes flow u1 ¼
Gðx;�y; 0Þ (where G is the shear rate), of a capsule made
from a strain-hardening membrane. Our membrane de-
scription is based on the well-established continuum ap-

FIG. 1. (a) Steady-state shapes for a Skalak capsule with C ¼
1 and � ¼ 1 in a planar extensional flow, starting from a sphere,
for capillary number Ca ¼ 1, 1.5, 2, 2.5, 3. The capsules are
extended along the x-direction, mainly contracted along the
y-direction, while the viewpoint of the shapes shown is on the
positive z-axis. (b) Steady-state profiles of a capsule (made from
a polymerized polylysine membrane coated by an alginate film)
in a planar extensional flow reported in Fig. 6 of the work by
Barthès-Biesel [6]. (c) A close view of the spindled and cusped
edges is shown for Ca ¼ 1:5 and Ca ¼ 2, respectively.
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proach and the theory of thin shells [1,10]. Typical mem-
brane thickness ranges from Oð�mÞ for alginate capsules
[3], to OðnmÞ for synthetic polysiloxane capsules [4] (i.e.,
it is several orders of magnitude smaller than the size of the
capsule), and thus the thin-shell theory has proven to be an
excellent description of these membranes [1,3–5]. To de-
scribe a strain-hardening membrane, we use the Skalak
constitutive law which accounts for both shearing and area-
dilatation, and while originally developed to describe bio-
logical membranes (such that of the erythrocyte), it can
also be employed to model membranes obtained by inter-
facial polymerization [1,13].

The surface stress on the membrane is determined by the
in-plane tensions, i.e., �f ¼ �rs � �, where the in-plane
tension tensor � is described by the Skalak constitutive law
which relates �’s eigenvalues (or principal elastic tensions
�P�, � ¼ 1, 2) with the principal stretch ratios �� by

�P1 ¼ Gs�1

�2

f�2
1 � 1þ C�2

2 ½ð�1�2Þ2 � 1�g (1)

(To calculate �P2 , reverse the �� subscripts.) [1,10]. The
shearing modulus Gs and the area-dilatation modulus K
introduce the (elastic) capillary number Ca ¼ �Ga=Gs (as
the ratio of viscous forces in the fluid to shearing forces in
the membrane) and the dimensionless area-dilatation
modulus C� K=Gs. Here, � is the viscosity of the sur-
rounding fluid, and a is the length scale, i.e., the radius of a
sphere with the same volume as the capsule, V ¼ 4�a3=3.
In this Letter, we investigate capsules with C ¼ 1 and
equiviscosity interior and surrounding fluids (i.e., viscosity
ratio � ¼ 1). The time is scaled with the flow time scale
G�1 while the reported membrane tensions are scaled with
Gs; the capsule’s equilibrium shape under quiescent con-
ditions (i.e., the elastic reference shape) is spherical.

The numerical solution of the interfacial problem is
achieved through our interfacial spectral boundary element
method for membranes [12]. The initial spherical interface
is divided into a moderate numberNE of elements (e.g., see
Figs. 1(a) and 3]; on each element, all geometric and
physical variables are discretized using ðNB � 1Þ-order
Lagrangian interpolation based on the zeros of orthogonal
polynomials. This yields the spectral convergence associ-
ated with the orthogonal polynomial expansion. The accu-
racy of our results was verified by employing smaller time
steps and different grid densities for several representative
cases. (In particular, we employed NE ¼ 6, 10, 14 spectral
elements with NB ¼ 10–14 basis points; for the time in-
tegration, we employed the 4th-order Runge-Kutta scheme
with time step in the range �t ¼ 10�4 � 10�3.) More
details on our interfacial spectral boundary methods may
be found in our earlier publications [14].

Figure 1(a) shows the steady-state shapes we obtain for
several capillary numbers Ca by starting from quiescent
initial conditions (i.e., a spherical configuration) and ap-
plying a steady flow rate Ca. Observe that for Ca ¼ 1, the
shape shows rounded edges while for Ca ¼ 1:5, the edges

are more pointed (i.e., the shape is spindled); at higher flow
rates, the shapes become cusped. Thus, the sequence of
steady-state profiles is (qualitatively) similar to that found
in experiments, shown here in Fig. 1(b). We emphasize that
we are unable to make quantitative comparisons since the
exact parameters in the experimental study are not known,
including which constitutive law is best suited to describe
the specific membrane, and the exact value of the viscosity
ratio � and the flow rates Ca for the shapes shown in the
experimental photographs. (As shown in Fig. 20 of
Ref. [10], polylysine membrane shows higher surface-
area resistance than the Skalak membrane with C ¼ 1
used in our computations; this may justify why the experi-
mental shapes show less elongation compared to our
shapes.)
Examination of the membrane tensions reveals that the

appearance of cusped edges at steady state is caused by the
existence of negative, or compressive, tensions near the
capsule edges as shown in Fig. 2. Starting from a sphere,
for any flow rate Ca, the negative minimum principal
tension �Pmin at early times is located at the capsule edges;

this tension produces no wrinkling owing to its transient
nature. For Ca ¼ 0:5, 1, 1.5 as the capsule reaches steady
state, the tensions become positive, or tensile, everywhere
on the capsule including its edges, and thus these steady-
state shapes are spindled. For these shapes, �Pmin is located

at the capsule intersection with the z-axis. For higher flow
rates (Ca ¼ 2, 2.5, 3), �Pmin is always located at the capsule

edges and reaches a steady-state negative value. The nega-
tive tensions near the capsule edges cause local compres-
sion (similar to that if we pinch the capsule edges with our
fingers) which results in the formation of a dimple near the
capsule edges as seen in Fig. 1(c) for Ca ¼ 2.
We emphasize that the value of the capillary number Ca

where this transition occurs depends on how the transient
dynamics reach steady-state, and thus on the specific tran-

FIG. 2. Evolution of the minimum principal tension �Pmin

among the spectral discretization points for a Skalak capsule
in a planar extensional flow, starting from a sphere, for Ca ¼
0:5; 1; 1:5; 2; 3.
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sient experiment, we apply to the capsule. Therefore, there
could be a range of high flow rates where both spindled and
cusped steady-state shapes exist. Note that our results so
far represent the case where, to find the steady-state cap-
sule shape for a given flow rate Ca, we start from a
spherical geometry and apply a steady flow rate with
capillary number Ca. In this type of experiment, the lowest
flow rate where cusped shapes were formed is Ca ¼ 1:75.

To find the bifurcation in the steady-state shapes (i.e., the
existence of both spindled and cusped edges for a range of
high flow rates), we also implemented another type of
experiment. In particular, starting from the rounded shape
for Ca ¼ 1, we gradually increased the capillary number
(with step size �Ca ¼ 0:25, 0.5) allowing the system to
reach steady state after each flow rate increase. In this
experiment, the steady-state shapes are spindled until
Ca ¼ 2:5 as shown in Fig. 3; for higher Ca, we obtained
the cusped profiles we found earlier shown in Fig. 1. We
also implemented a gradual decrease in the capillary num-
ber (with step size �Ca ¼ 0:25) starting from the cusped
steady-state shape for Ca ¼ 3 shown in Fig. 1. In this
experiment, the steady-state shapes are cusped until Ca ¼
2 and spindled for lower flow rates.

To show clearly the transition from spindled-to-cusped
shapes as well as the shape bifurcation, in Fig. 4, we collect
our data for the minimum principal tension �Pmin and the

edge curvature of the steady-state shapes for the flow rates
studied. Near the end of the spindle curve, there is a large
increase of the edge curvature with positive value, and thus
the pointed shapes have concave (or spindled) edges as
shown in Fig. 3. On the other hand, along the cusp curve,
the negative tensions near the capsule edges cause local
compression and dimple appearance, and thus cusped
steady-state profiles with large negative edge curvature
(Fig. 1). It is of interest to note that, although the shape
bifurcation creates a district change in the capsule profile,
it causes minimal changes in the capsule’s overall
dimensions.

To explain the edge evolution in these two types of
experiments, we need to consider the interaction of the
hydrodynamics forces with the membrane tensions. When
a spherical capsule is let to deform in a steady flow, the
restoring membrane tensions are initially weak (owing to
the small interfacial deformation) but increase over time as
the capsule deforms. In a moderate flow rate, the deform-
ing hydrodynamic forces are also weak, and thus the
capsule edges become monotonically more pointed over
time as shown in Fig. 5 for Ca ¼ 0:5. In higher flow rates
(e.g., Ca ¼ 1, 1.25), the stronger hydrodynamic forces
overcome the weak membrane tensions, and thus initially
the capsule tips become very pointed; however, after some
time, the membrane tensions increase and cause a decrease
of the edge curvature towards its steady-state positive
value. For Ca � 1:75, the hydrodynamic forces are so
strong that cause the appearance of cusped edges via a
sharp transition of the edge curvature from positive to
negative as shown in the figure’s inset for Ca ¼ 2. In the
second type of experiment, the gradual increase of the flow
rate is accompanied by a gradual increase of the membrane

FIG. 4. Bifurcation in the dependence of (a) the minimum
principal tension �Pmin, and (b) the edge curvature (determined

along the interfacial cross-section with the z ¼ 0 plane), with the
capillary number Ca, for the steady-state shape of a Skalak
capsule.

FIG. 3. Spindled steady-state shapes of a Skalak capsule for
capillary number Ca ¼ 2, 2.5. A three-dimensional view of the
Ca ¼ 2:5 shape is also included to show the flat ellipsoidal
conformation of the capsule. These shapes lie in the bifurcation
range 1:75 � Ca � 2:5 and were found by gradually increasing
the flow rate.
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tensions, and thus the capsule edges become monotoni-
cally more pointed over time; this postpones the appear-
ance of the cusped edges until Ca> 2:5. Therefore, the
different evolution of the membrane tensions in the two
types of experiments creates the bifurcation range for
1:75 � Ca � 2:5.

We emphasize that our results were derived for zero
bending resistance; as the bending resistance increases
from zero but still remains sufficiently small [e.g., the
membrane shown in Fig. 1(b)], we expect that the edge
transition occurs at a slightly higher flow rate.

Concluding, our computational investigation has re-
vealed a number of new physical results and insight for
the dynamics of (strain-hardening) Skalak-type capsules at
high flow rates which are commonly encountered in indus-
trial and physiological processes. [For mm-size capsules
made from aminomethacrylate membranes with shearing
modulus Gs ¼ Oð10�2ÞN=m, flow rates Ca ¼ Oð1Þ re-
quire shear stress �G ¼ Oð10Þ Pa [5].]

First, we found that as the flow rate increases, the steady-
state capsule edges from rounded become spindled and
finally cusped. At high flow rates, the transition to cusped
shapes allows the capsule to withstand the increased hydro-
dynamic forces, as found for low-viscosity drops or bub-
bles in strong extensional Stokes flows. Thus, our present
work complements the similar evolution for low-viscosity
drops which was first identified by the famous experiments
of G. I. Taylor in 1934, further explained in the 1970’s and
1980’s and still finds useful applications nowadays [7].
Second, the spindled-to-cusped shape transition is possible
via the appearance of compressive tensions near the cap-
sule edges at high flow rates; unlike earlier studies [10], our
work shows that these compressive tensions do not cause
interfacial breaking. Third, a bifurcation in the steady-state
shapes is also found (i.e., existence of both spindled and
cusped edges for a range of high flow rates) by implement-
ing different transient processes, e.g., gradual and large

change of the flow rates, owing to the different evolution of
the membrane tensions. We emphasize that such bifurca-
tion does not exist for low-viscosity drops since large flow
rate increases cause instability and interfacial breaking.
Our work elucidates the importance of compressive

tensions in capsule mechanical deformation as also found
recently in biophysical processes, e.g., in the case of a fluid
vesicle undergoing lipid uptake [15]. We hope that our
study provides motivation for more experiments with cap-
sules at high flow rates; in such a case, the experimental
studies should monitor the capsule from different view-
angles to capture the details of the three-dimensional in-
terfacial shape as seen in Fig. 1.
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FIG. 5. Time evolution of the capsule’s edge curvature for
Ca ¼ 0:5, 1, 1.25 starting from a sphere. The inset shows the
same evolution for Ca ¼ 2 starting from a sphere (left y-axis)
and from the steady-state shape for Ca ¼ 1:5 (right y-axis).
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