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In this paper we consider the dynamics of droplets attached to rough or chemically
inhomogeneous solid substrates with a circular contact line as they are deformed
in subcritical and supercritical simple shear flows. Our main interest is concentrated
on identifying the portions of the contact line where the contact angle hysteresis
condition is first violated, i.e. the portions of the contact line which slide first. To
address this physical problem, we employ our fully implicit time integration algorithm
for interfacial dynamics in Stokes flow. Our study reveals that droplets with small and
moderate initial angles show an early period where both upstream and downstream
sliding are equally favourable as well as a late downstream-favoured period. By
contrast, droplets with large initial angles, after a rather small early equally favourable
period, show a large period where downstream sliding is more favourable than the
upstream sliding. Owing to the surface tension force, droplets with intermediate initial
angles are shown to be more stable. Droplets with different viscosity ratio show similar
behaviour with respect to the onset of interfacial sliding; however, the viscosity ratio
strongly affects the rate of the interfacial deformation and the equilibrium conditions.
An asymptotic behaviour for very small or large viscosity ratios is shown to exist.

1. Introduction

The deformation, sliding and dislodging of fluid droplets adherent to solid substrates
constitute a fundamental problem of fluid dynamics with applications in numerous
areas including distillation, spray coating, packed towers and a variety of multiphase
flow operations in the chemical process industry. Our interest in the problem focuses
on viscous flows at low Reynolds number. This regime has relevance in coating
operations, enhanced oil recovery, microfluidics and biological systems. In the coating
industry, the presence of small liquid droplets or gas bubbles on solid surfaces is
a major concern in the design of process equipment, because even a small flow
disturbance is sufficient to destroy the uniformity required in precision film coating
(Dimitrakopoulos & Higdon 1997). In the petroleum industry, enhanced oil recovery
techniques are strongly dependent on the interaction of oil and water in immiscible
two-phase mixtures, and the success of such operations depends on the displacement of
small oil droplets attached to solid surfaces (Bear 1972). In microfluidics, drop sliding
on solid channels is commonly used to produce controlled size droplets and for
droplet mixing (e.g. see Cristini & Tan 2004 ; Stone, Stroock & Ajdari 2004; Tan et al.
2004). This problem also provides useful insight into cell spreading (e.g. Greenspan
1978; Hynes 1992; Hodges & Jensen 2002).

The deformation and sliding of fluid droplets attached to rough and chemically
inhomogeneous solid surfaces involve several stages because the static contact angle
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exhibits a hysteresis effect, i.e. the contact line remains stationary for any angle in the
range

Or <0 <0,. (1)

The limits 64 and 63 are called the advancing and receding angles, respectively. (More
details concerning the phenomenon of contact angle hysteresis may be found in
Dimitrakopoulos & Higdon 1997, 1998).

On such surfaces, under no external forcing conditions, a fluid drop may assume the
stable axisymmetric shape of a spherical cap with a constant contact angle 6, (with
Or <6y <0,) around a circular contact line. After the initiation of a shearing flow, the
droplet deforms and may break into smaller segments in strong enough flow rates.
At the same time, the contact angles change: in the upstream portion of the contact
line the contact angles decrease whereas the opposite happens in the downstream
portion of the contact line. As long as (1) is satisfied everywhere along the contact
line, the shape of the contact line remains unchanged. On the other hand, if the
contact angle violates this condition in some area(s) of the contact line, the contact
line rearranges its shape to satisfy (1) and thus a temporary drop sliding occurs. If
the flow is not strong enough, a new equilibrium interfacial shape is reached which
shows a non-axisymmetric contact-line shape. In strong enough flows, (1) may not be
satisfied under any contact-line shape and the drop slips away.

The fundamental issues associated with the yield criteria for drop displacement
from rigid boundaries (i.e. the equilibrium conditions just before the final drop
dislodging) have been addressed in a series of papers by Dussan V. and coworkers
(Dussan V. & Chow 1983; Dussan V. 1985, 1987), and Dimitrakopoulos & Higdon
(1997, 1998, 1999, 2001, 2003). Dussan V.’s analysis for shear-flow displacement was
based on asymptotic theory valid for very small contact angles and much smaller
hysteresis (Dussan V. 1987). Dimitrakopoulos & Higdon (1997, 1998, 1999, 2001, 2003)
considered stationary interfaces on solid surfaces and identified the yield criteria for
displacement of fluid droplets and bridges. In their studies, the authors determined the
optimal shape of the contact line which withstands the maximum external forcing, e.g.
flow rate or gravitational force. Several physical systems were considered, including
shear- and pressure-driven flows at low Reynolds number and the gravitational effects
on fluid droplets attached to inclined solid surfaces. These studies considered a wide
range of the parameters affecting these systems, i.e. viscosity ratio A, capillary number
Ca, Bond number B, and advancing and receding contact angles. Comparison of
the numerical results with asymptotic theories revealed that the useful range of the
lubrication models is (quantitatively) extremely limited.

Several studies have considered the drop deformation under fixed constant line con-
ditions for two- and three-dimensional interfaces. Feng & Basaran (1994) conducted a
detailed study of the bubble displacement problem for steady two-dimensional flows at
arbitrary Reynolds number. Schleizer & Bonnecaze (1999) studied the problem of de-
formation and sliding in viscous shear- and pressure-driven flows for two-dimensional
droplets. Spelt (2006) considered pinned and moving two-dimensional droplets on an
adhering channel at moderate-Reynolds-number shear flows. Owing to the restriction
at two dimensions where the contact line degenerates into two contact points, the
equilibrium conditions found in these studies may characterize the conditions both
before the initial sliding and before the final drop dislodging. Li & Pozrikidis (1996)
studied the shear-induced deformation of three-dimensional droplets with viscosity
ratio /=1 adhering to solid substrates with fixed circular or elliptical contact lines.
Yon & Pozrikidis (1999) extended the previous study by considering the influence of
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the viscosity ratio A and the effect of insoluble surfactants on the droplet deformation.
These studies by Pozrikidis and coworkers considered the droplet deformation at the
initial stage, i.e. before the onset of sliding. We emphasize that, although some inform-
ation was presented for the transient deformation under subcritical and supercritical
flow conditions (mainly the drop shape evolution), the earlier studies on two- and
three-dimensional interfaces concentrated their interest on identifying the equilibrium
interfacial properties as the capillary number increases. Thus, the conditions for the
onset of interfacial sliding under contact angle hysteresis were not identified.

A wealth of studies have considered the dynamics of droplet sliding under flow
or gravitational forcing. A review on drop sliding may be found in Dussan V.
(1979), Shikhmurzaev (1997) and Spelt (2006). Several computational studies have
considered the sliding dynamics of (mostly two-dimensional) droplets at both low-
and finite-Reynolds-number flows (e.g. Schleizer & Bonnecaze 1999; Spelt 2006;
Zhang, Miksis & Bankoff 2006). These studies commonly ignored the contact angle
hysteresis; in this case, even the slightest external forcing is able to cause interfacial
sliding. To the best of our knowledge, the conditions for the onset of sliding on rough
surfaces have never been identified or used in these studies. This omission becomes
more important if we consider that most experimental studies have concentrated on
the problem of gravitational displacement.

Therefore, to understand the contact line motion on rough surfaces, we should
first study the onset of interfacial sliding. To achieve this, in the present study we
consider the deformation of a three-dimensional droplet attached to a rough surface
as it deforms owing to a steady shear flow at low Reynolds number. The initial
drop shape is a spherical cap forming a constant contact angle 6, (with 6z <6y <6,)
around a circular contact line. The main interest of the current study is to identify the
portion(s) of the contact line where the hysteresis condition, (1), is first violated, i.e.
the portion(s) of the contact line which will slide first. We also consider the transient
evolution of the droplet shape as well as that of the contact angles around the initial
circular contact line, and we identify the effects of the viscosity ratio.

We emphasize that for the problem studied in this paper, the onset of interfacial
sliding cannot be inferred from the knowledge of the equilibrium contact angle distri-
bution at gradually increasing flow rates. In particular, the interfacial sliding may oc-
cur during the transient evolution, depending on the flow rate, the physical parameters
of the material system (i.e. 6z, 64 and the viscosity ratio) as well as the initial angle 6.

To address this problem, we employ our fully implicit time integration algorithm
for interfacial dynamics in Stokes flow. Our method is based on a mathematically
rigorous combination of implicit schemes with our Jacobian-free three-dimensional
Newton method (Dimitrakopoulos & Higdon 1998), and thus it has strong stability
properties which permit the use of large time steps.

After the mathematical formulation of multiphase flows in the Stokes regime, in
§2 we present a brief review of our implicit interfacial spectral boundary-element
method. In §3, we apply our numerical algorithm for the study of the dynamics
of droplets attached to rough or chemically inhomogeneous solid substrates with a
circular contact line as they are deformed in subcritical and supercritical simple shear
flows. Our study reveals that droplets with small and moderate initial angles show
an early period where both upstream and downstream sliding are equally favourable,
as well as a late downstream-favored period. By contrast, droplets with large initial
angles, after a rather small early equally favourable period, show a large period
where downstream sliding is more favourable than the upstream sliding. In addition,
droplets with intermediate initial angles are shown to be more stable owing to the
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FIGURE 1. A fluid droplet attached to a solid boundary in a viscous shear flow.

surface tension force. The viscosity ratio is found to produce similar behaviour with
respect to the onset of interfacial sliding; however, higher-viscosity droplets show a
slower deformation rate, but a higher equilibrium interfacial deformation due to the
increased viscous stress. An asymptotic behaviour for very small or large viscosity
ratios is shown to exist.

2. Mathematical formulation and computational algorithm
2.1. Mathematical formulation of viscous multiphase flows

We consider a three-dimensional droplet attached to an infinite plane solid wall sur-
rounded by a viscous fluid (figure 1). Initially, the fluids are at hydrostatic equilibrium
while the drop shape is a spherical cap forming a constant contact angle 6 =6, (meas-
ured from within the drop phase) around a circular contact line. The droplet (fluid 1)
has density p; and viscosity Au, while the surrounding fluid (fluid 2) has density p,
and viscosity u. The droplet size is specified by its volume V or equivalently by the
radius a of a spherical droplet of volume 4na®/3 = V. The acceleration due to gravity
is g while the surface tension y is assumed constant. At time ¢ =0, a steady shear flow
u®=(Gz,0,0), where G is the shear rate, is introduced into the system causing inter-
facial deformation. In our study, the time is scaled with the flow time scale t, =G™".
The capillary number Ca and Bond number B, are defined by

G _ 2
ca=t0 g _(Prmplga

14 14

These dimensionless parameters represent the ratio of viscous flow forces and
gravitational forces to interfacial forces, respectively. Note that the length scale a
used in the definition of the two dimensionless parameters above is based on the
droplet volume V. The choice of this length scale is motivated by our interest in
describing the physics of a specific fluid volume V which may be attached on a solid
surface in many possible initial configurations (i.e. different angles 6,) and undergo
simple shear flow at different flow rates (or Ca).

The governing equations in fluid 2 are the Stokes equations together with continuity

Voo =—Vp+uVu=0, (3)
V-u=0, (4)

(2)

while in the droplet, the same equations apply with the viscosity replaced by Au.
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The boundary condition on the solid wall gives

u=0 on z=0, (5)

while far from the droplet
u=u". (6)
At the interface, the boundary conditions on the velocity u and surface stress f are
u =u, (7)
Af =fr—fi=v(V-mn+(p2—pi)(g-x)n. (8)

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively. The
surface stress is defined as f =0 -n where n is the unit normal which we choose
to point into fluid 2. The pressure as defined in ¢ is the dynamic pressure; hence
the gravity force is absent from (3) and appears in the interfacial stress boundary
condition, (8).
The time evolution of the interfacial shape may be determined via the kinematic
condition at the interface
dx
dt
Although the governing equations and boundary conditions are linear in u# and
f, the problem of determining the dynamic droplet shape constitutes a nonlinear
problem, i.e. the velocity u, stress f and curvature V-n are nonlinear functions of the
geometrical variables describing the interface shape.

= (u-n)n. 9)

2.2. Implicit interfacial spectral boundary-element method

Since the pioneering work of Acrivos and coworkers (Youngren & Acrivos 1976;
Rallison & Acrivos 1978), a common way to solve the interfacial problem presented
in §2.1, is by transforming the partial differential equations, (3) and (4), into boundary-
integral equations, and using an explicit time-integration scheme for the determination
of the interfacial evolution. The main benefit of this transformation is the great
reduction in computational time since a fully three-dimensional problem can be
described and solved using only two (curvilinear) coordinates.

In particular, the flow over the drop interface Sy may be described by the integral
formula

Quilxo) — 2ou”(x0) = — / (S (f— f*)— uT+ (s —u*)-n]dS

S

+/[S'f1_;uMT'u1'n]dS
S

— /S [S-(Af = f7)—uT-((1 —u—u”)-n]dsS, (10)
0
where S is the portion of the solid surface wetted by the drop and S, the remaining
solid surface (Dimitrakopoulos & Higdon 1998). Note that S is the fundamental
solution for the three-dimensional Stokes equations and T the associated stress. The
coefficient §2 takes values 4nu(1 4+ 4), 4niu and 4nu for points xo on the surfaces S,
Sy and S,, respectively, while £2., takes the value 4nu for points xo on the surfaces
So and S, and zero for points on the surface Sj.

In order to determine the droplet shape as a function of time, an explicit time-
integration scheme may be employed to solve the kinematic condition at the interface,
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(9). However, to ensure numerical stability, the employed time step must be smaller
than any (numerical or physical) time scale appearing in the computational problem.
The smallest time scale is commonly of a numerical nature, associated with the
numerical discretization and in dimensionless form it may be written as

At < O(Ca Axpin) (11)

where Ax,;, is the minimum grid spacing appearing in the computational problem,
e.g. as discussed in Rallison (1981), Zinchenko & Davis (2005).

To avoid the associated penalty of the large number of time steps required to
monitor the deformation of the fluid interface, we have developed an efficient fully
implicit time-integration algorithm for interfacial dynamics in Stokes flow. Our
method is based on a mathematically rigorous combination of implicit schemes with
our Jacobian-free three-dimensional Newton method (Dimitrakopoulos & Higdon
1998). We employ both multi-step (one-stage) implicit formulae (e.g. Euler and
backward differentiation schemes) and the multi-stage diagonally implicit Runge—
Kutta schemes. (More details on these schemes may be found in Alexander 1997 and
Butcher 2003).

By combining an implicit scheme with our Newton method, the resulting interfacial
algorithm preserves the stability properties of the corresponding implicit formula, and
thus it has strong stability properties which permit the use of very large time steps.
In addition, we can easily achieve sufficient accuracy, even with large time steps, by
employing high-order implicit schemes. See Dimitrakopoulos (2007) for more details
on the implicit interfacial method.

The numerical solution of our implicit algorithm is achieved through an extension
of the spectral boundary-element method described in Dimitrakopoulos & Higdon
(1998) and Muldowney & Higdon (1995). The initial interface is divided into a
moderate number Ng of elements. The geometric variables on each element are
discretized using Lagrangian interpolation in terms of parametric variables &, n on
the square interval [—1, 1]%, e.g.

Np Np

x(E )= x(&. njhiE) h;n), (12)

i=1 j=1

where h; is the (Np — 1)-order Lagrangian interpolant polynomial. The physical
variables u and f are represented similarly. The base points (§;, n;) for the inter-
polation are chosen as the zeros of Ng-order orthogonal polynomials. This is
equivalent to an orthogonal polynomial expansion and yields the spectral convergence
associated with such expansions.

The boundary-integral equations, e.g. (10), admit two different types of points. The
collocation points x, of the left-hand side where the equation is required to hold and
the basis points x of the right-hand side where the physical variables # and f are
defined. The spectral-element method as implemented here employs collocation points
of Gauss quadrature, i.e. in the interior of the element. As a result the boundary-
integral equations hold even for singular elements, i.e. the elements which contain the
contact line where the normal vector is not uniquely defined.

By combining the implicit interfacial method with the spectral boundary-element
discretization, the resulting algorithm exploits all the benefits of the spectral methods,
i.e. high-order interpolation with exponential convergence and numerical stability
with increasing number of spectral points, along with the versatility of the boundary-
element method, i.e. the ability to handle the most complicated geometries. In addition,
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it is not affected by the disadvantage of the spectral methods used in volume discret-
ization; namely, the requirement to deal with dense systems, because in boundary-
integral formulations the resulting systems are always dense, independent of the form
of the discretization. We note that the exponential convergence in the numerical
accuracy is evident at both the properties of a given shape, such as the interfacial
curvature, and the dynamic evolution of the interfacial shape (Dimitrakopoulos
2007).

3. Results

In the present study, we describe the adherent droplets by employing a discretization
of Ng =24 spectral elements, similar to that employed in Dimitrakopoulos & Higdon
(1998). The surface of the drop is projected onto a cube whose faces are subdivided
into a total of 11 elements (figure 2c). The wetted area S; on the solid surface is
discretized into five elements while the outer solid surface S, is discretized into two
rows of four elements each. (See figure 3 in our earlier study.) In our computations,
the outer solid surface (which formally should extend to infinity) covers an area of at
least 10 times the radius of the contact line which is sufficient to produce negligible
error in all cases.

The results we present in this section for low and moderate viscosity ratio, A< 1,
were derived by employing Nz =7-9 basis points and the third-order diagonally
implicit Runge—Kutta scheme (DIRK3) with Az =0.1. For droplets with high viscosity
ratio (A=10, 100), larger time steps were employed (see caption of figure 7). The
accuracy of our results was verified by employing smaller time steps (usually
At=0.05,0.02) and different basis points, (i.e. Ny =7-9). The three-dimensional
droplet shapes presented here were derived from the actual spectral grid by spectrally
interpolating to Nz =20. The parameters affecting this problem have been described
in §2.1; since in this paper we consider droplets with B; =0, the problem depends on
the capillary number Ca, the viscosity ratio A and the initial angle 6.

Figure 2(a) shows the time evolution of the interfacial profile for an adherent droplet
with 2=1 and 6, =90° in simple shear flow with Ca=0.15. In the upstream portion
of the interface, the contact angle is reduced monotonically with time whereas the
opposite happens in the downstream portion where the interface extends in the flow
direction. This is also shown in figure 2(b) where we plot the variation of the contact
angle around the circular contact line at several times. For this physical system,
Ca=0.15 constitutes a subcritical capillary number, i.e. the drop interface reaches
equilibrium after an initial transient period. The rather well-deformed interfacial
shape at equilibrium is shown at figure 2(c).

Figure 2(b) shows that for circular contact lines, the contact angle increases
monotonically with the azimuthal angle ¢ from the upstream towards the downstream
area of the contact line at all times. (The azimuthal angle ¢ is measured with respect
to the positive x-direction as usual.) The smallest contact angle 6, occurs at ¢ =180°
whereas the largest angle 6, occurs at ¢ =0°. Thus, to identify which portion of the
contact line slides first, it is sufficient to monitor the time evolution of the two extreme
angles, 6, and 6,.

Figure 3(a) shows the time evolution of the upstream and downstream contact
angles, 6, and 6, as well as their difference 6, — 0,. This figure clearly reveals that
Ca=0.15 is a subcritical capillary number; after the initial transient evolution, both
angles reach equilibrium where the interfacial shape does not change with time.
Observe that this flow rate causes significant interfacial deformation (as shown in
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FIGURE 2. Deformation of an adherent droplet with A=1 and 6, =90° in simple shear flow
with Ca=0.15. (a) Droplet profile at times ¢t =0, 0.5, 1, 10. (b) The variation of the contact
angle 6 as a function of the azimuthal angle ¢ for times r=0,0.2,0.5, 1, 2,4, 10. (c) Droplet
shape at r =10, i.e. at equilibrium.

figure 2) and a large variation of the contact angles, 6, and 6,;, whose difference
reaches 6, — 6, ~97.5° at equilibrium.

To demonstrate clearly the variation of the upstream and downstream contact
angles over time, in figure 3(b) we plot their time evolution with respect to their initial
value 6y =90°. Observe that initially both variations, 6, — 6, and 6, — 6y, grow equally
with time. Later, the downstream angle increases faster than the upstream one.
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FiGURe 3. Deformation of an adherent droplet with A=1 and 6y, =90° in simple shear flow
with Ca=0.15. (a) Time evolution of the upstream and downstream contact angles, 6, and
64. Also included is the evolution of the difference 6, — 6,. (b) Time evolution of the upstream
and downstream contact angle change, 6y — 6, and 6, — 6.

Figure 3(b) constitutes probably the most important result with respect to the goals
of this study. To explain the physical significance of this figure, we denote as 6, and
0; the value of the two angles at the end of the initial equal-growth period, while 657
and 637 denote the value of the angles at equilibrium, i.e. at the end of the unequal-
growth period. Note that for this case, 6y — 0, =~6; — 6y~ 20° while 6, — 04 ~42.5°
and 0,7 — 0y ~ 55°.

For real systems which exhibit the behaviour shown in figure 3(b), the advancing
and receding angles, 64 and g, may fall into the following distinct regimes. The first
case is when these angles fall in the equal-growth interval, i.e. 6; <60 <0, <06,. In
this case, if the droplet is placed on the solid forming an initial angle 6y < (6 +64)/2,
then after some time the upstream portion of the drop will slide first. The opposite
will happen if the initial angle is 6y > (6 + 604)/2 where the downstream drop portion
will begin moving on the solid substrate. In the limiting case of 6y =(0z + 04)/2,
both the downstream and the upstream portions may start sliding simultaneously. In
general, we may conclude that for systems with 07 <6y <04 <6, both downstream
and upstream sliding are equally favourable, and the first contact-line motion depends
on the initial angle 6.

The second distinct regime is when the advancing and receding angles fall in the
unequal-growth interval, i.e. 021 <6g <0, <0, <0, <0;". In this case, the downstream
sliding is more favourable than the upstream sliding, especially for advancing and
receding angles close to the limits of the unequal-growth interval (i.e. 6z — 6¢4 and
0, — 05"). However, even in this case, the drop may begin to slide with its upstream
portion if the initial angle 6, is close enough to 6.

In the last distinct regime, the advancing and receding angles fall outside the
unequal-growth interval, ie. 0r <02 <65" <0,. In this case, the flow rate is not
strong enough to initiate interfacial sliding and the droplet will remain attached to
the solid surface with the original circular contact line.

In the case, when the advancing and receding angles fall into different regimes,
the first contact-line motion may also be derived similarly. We emphasize that our
conclusions above refer to systems which show an initial equal-growth period, followed
by an unequal (downstream-favoured) growth period, as the one shown in figure 3(b).
For a given viscosity ratio A, the existence and size of these two growth regimes is
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FIGURE 4. Influence of the capillary number Ca on the deformation of an adherent droplet with
A=1and 6y =90° in simple shear flow. (a) Time evolution of the contact angle difference 6,—6,
for Ca=0.05,0.1, 0.15, 0.2, 0.25. (b) Time evolution of the downstream and upstream contact
angle change: , 04 —6p; ---, 6o —6,. The capillary number is Ca=0.05, 0.1, 0.15, 0.25. (The
behaviour for Ca=0.2 is similar; the corresponding curves have been omitted for clarity.)

a function of the remaining system parameters, i.e. the capillary number Ca and the
initial contact angle 6.

We investigate now the influence of the capillary number Ca on the deformation of
adherent droplets. Figure 4(a) shows the time evolution of the contact-angle difference
6, —06, for a droplet with A=1 and 6, =90°, and for several capillary numbers. As the
flow rate increases, the higher droplet deformation is accompanied with a monotonic
increase in the contact-angle difference 6, — 6, (up to equilibrium, if one exists). In
addition, we observe that initially 6, — 6, shows the same linear increase with time
for any flow rate.

The explanation for the monotonic increase of the contact-angle difference 6, — 6,
with Ca becomes clear when the forces acting on the droplet are considered. Trying
to balance the increased hydrodynamic force Fj is the component of interfacial force
in the plane of the wall parallel to the flow direction. This force is proportional to the
width (or radius) w of the contact region and, for small angle difference 6,—6,, it scales
as F, ~(cos6, —cosf,;)yw. For small contact angles, this force takes the asymptotic
form (6;—6,)0y w. Based on the volume of the drop, we have V ~a* ~ w?h where the
height of the drop & ~ w tan 6y ~ w6, for small angles; thus, w ~a9(;1/3. Therefore, for
small contact angles and contact-angle difference 6, — 6,, the interfacial force scales
as

F, ~ (0 — 6,)yab;". (13)

To balance the hydrodynamic force Fj,, the droplet must increase F, and thus the
contact-angle difference 6, — 6,. For a droplet with an initial angle 6y, as the capillary
number Ca (and thus Fj) increases, the increased interfacial force is accompanied by
a monotonic increase in the contact-angle difference 6, — 6,, in agreement with our
numerical results (figure 4a).

Figure 4(b) shows the time evolution of the upstream and downstream contact-
angle change, 6, — 6, and 6, — 6,, respectively. Several conclusions may be derived
from this figure. First, both contact-angle changes show the same linear increase with
time for any flow rate; thus initially, the dynamics upstream and downstream are
the same, independently of the capillary number. We also conclude that adherent
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FIGURE 5. Deformation of an adherent droplet with A=1 and 6y = 140° in simple shear flow
with Ca=0.1. (a) Droplet profile at times r=0,0.2, 0.5, 1, 2. (b) The variation of the contact
angle 0 as a function of the azimuthal angle ¢ for times t =0, 0.2, 0.5, 1, 2.

droplets with 6y =90° show the two growth regimes (i.e. the equal growth and the
downstream-favoured growth observed previously for Ca=0.15) for both subcritical
and supercritical Ca. In addition, figure 4(b) shows that as the flow rate increases, the
relative size of the unequal growth regime (with respect to the size of the equal growth
area) is increased. This is also evident in the larger variation of the downstream angle,
6, — 6y, compared to that of the upstream angle, ) — 6,, at equilibrium for subcritical
capillary numbers as the flow rate increases.

We investigate now the influence of the initial angle 6, on the deformation of
adherent droplets. Our computational results for droplets with 6, = 30°, 50°, 70°, 100°,
110° reveal that the deformation of these droplets shows qualitatively similar
behaviour to that for 6y=90° discussed previously (and thus the corresponding
figures have been omitted.) On the other hand, droplets with large initial angles,
1.e. 6y = 120°, show a different deformation behaviour. To show this, in figure 5 we
present our results for a droplet with 6y = 140° and Ca=0.1. Observe that in this case,
the downstream interfacial area tends to become tangential to the solid (figure 5a).
A careful investigation of the variation of the contact angle around the contact line
depicted in figure 5(b) reveals that the upstream interfacial area shows a greater
contact-angle change than the downstream area.
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FIGURE 6. Influence of the initial angle 6y on the deformation of an adherent droplet with
A=1 in simple shear flow with Ca=0.1. (a) Time evolution of the downstream and upstream
contact angle change: ——, 6; — 6y; ---, 6y — 6,. The initial angle is 6, =30°, 70°, 110°. (The
behaviour for 6y =150°,90°, 100° is similar; the corresponding curves have been omitted for
clarity.) (b) As in (a) but for 6y =120°, 130°, 140°. (c) Time evolution of the contact angle
difference 6, — 6, for 6, =30°, ..., 140°.

We collect now our results for the time evolution of the contact-angle downstream
and upstream change, 6, — 0y and 6, —6,, for different initial angles. Figure 6(a) shows
this evolution for small and moderate initial angles 6, < 110° while in figure 6(b)
we plot the time evolution of the contact-angle change for large angles 6, > 120°.
From this figure, it is evident that for small enough hysteresis, during the transient
evolution, all drops with circular contact lines show an early period where both
upstream and downstream sliding are equally favourable. During this regime, if the
droplet is placed on the solid forming an initial angle 6y > (0 + 64)/2, then after
some time, the downstream portion of the drop will slide first. The opposite will
happen if the initial angle is 8y < (6 + 64)/2 where the upstream drop portion will
begin moving on the solid substrate. Our numerical investigation shows that the
initial equal-growth regime is more restricted for drops with large initial angles. For
large enough hysteresis, drops with small and moderate initial angles 6, show a late
downstream-favoured regime, where the downstream sliding occurs for initial angles
6o > 0, with 65 < (6r + 604)/2. By contrast, drops with large initial angles show a late
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upstream-favoured regime, where the upstream sliding occurs for initial angles 6, < 6;
with 65 > (Or +64)/2.

An additional conclusion is also evident from the time evolution of the contact
angle difference 6,—6,, plotted in figure 6(c) for the different angles we have studied in
the work. Initially, droplets with moderate and large angles show the same evolution
whereas afterwards there is a monotonic increase in 6; — 6, with 6, at the same time
instance. On the other hand, later in time (e.g. near or at equilibrium) the droplet
with 6, =70° shows the minimum contact-angle difference 6, — 6,, i.e. it is the most
stable configuration.

Thus, droplets with intermediate initial angles are more stable than droplets
with small or large initial angles. To explain this, consider that the interfacial
force F), ~(cos6, —cosb,)yw reaches its maximum value at 6y =90°. Higher initial
angles 6, reduce the net interfacial force leading to larger deformations and thus
contact-angle difference 6; — 6,. This conclusion is in agreement with our numerical
results shown in figure 6(c), which reveals that the minimum difference 6, — 6,
actually occurs at 6,=70°. Thus, the fact that droplets with intermediate initial
angles are more stable than droplets with small or large initial angles is associated
with the interfacial force F), as found for the optimal equilibrium shape of adherent
drops (Dimitrakopoulos & Higdon 1998).

To investigate the effects of the viscosity of the fluids, we have studied droplets with
different viscosity ratio (mainly 42=0, 1, 10). With respect to the onset of interfacial
sliding, the droplets with different viscosity ratio show similar behaviour and thus
the corresponding figures for 1#1 have been omitted. For a given flow rate Ca
and initial angle 6y, as the viscosity ratio increases from small values, the droplet
shows a slower deformation rate (owing to the increased inner viscosity Au), and
a higher equilibrium interfacial deformation (if one exists) owing to the increased
hydrodynamic force on the drop (i.e. the increased viscous stress). Both conclusions
are evident in figure 7(a, b) where we plot the time evolution of the upstream and
downstream contact angles, 6, and 6,, as well as the contact angle difference 6, — 6,,
for a droplet with 6, =90° and Ca=0.12, and for several viscosity ratios.

Observe that in figure 7(a, b) the time is scaled with 1+ /. The reason for this scaling
is that the dynamics of droplets with different viscosity ratio evolve on the surface
tension time scale which may be described by 7, = (1 + A)ua/y =(1 4+ A)Cat;. Thus,
the high-viscosity droplets show a much slower deformation rate than that for low-
viscosity drops. Figure 7(c) shows the droplet profiles at equilibrium. As the viscosity
ratio increases, the droplet shows a higher equilibrium interfacial deformation. For
this initial angle 8y, the downstream portion of the droplet tends to become tangential
to the solid surface at high viscosity ratio (i.e. this flow rate is close to the critical
value for high A). We note that in figure 7 the curves for 2=0,0.001 are nearly
coincident; the same is true for the high-viscosity curves 4= 100, 1000. This indicates
that the droplet deformation shows asymptotic behaviour for very small or very large
viscosity ratios.

As a closure, we note that the fact that the downstream sliding is more favourable
for droplets with small and moderate initial angles during their late evolution period
was identified in the earlier work of Li & Pozrikidis (1996) based on the equilibrium
distribution of the contact angle around the contact line for several subcritical capillary
numbers of droplets with 6y =90° (see their §4.1.2). However, as we discuss in the
present study, the initiation of interfacial sliding is a more complicated phenomenon
where under certain conditions both downstream and upstream sliding may be equally
favourable or upstream sliding may be more favourable than downstream motion.
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FiGURE 7. Influence of the viscosity ratio A on the deformation of an adherent droplet with
6o =90° in simple shear flow with Ca=0.12. Viscosity ratio studied: 2=0, 0.001, 0.1, 1, 10, 100,
1000. (a) Time evolution of the upstream and downstream contact angles, 6, and 6. (b) Time
evolution of the contact angle difference 6; — 6,. (c) Droplet profile at equilibrium. Note that
the curves for =0, 0.001 nearly coincide; the same happens for the curves for 4 =100, 1000.
The results for /=0, 0.001, 0.1, 1 were obtained by employing Ar=0.1 in the time interval
[0, 20]. The results for A =10, 100, 1000 were obtained by employing Az =0.5, 2, 20 in the time
interval [0, 50], [0, 400], [0, 4000], respectively.

4. Conclusions

In this paper, we have considered the dynamics of droplets attached to rough or
chemically inhomogeneous solid substrates with a circular contact line as they are
deformed in subcritical and supercritical simple shear flows. Our main interest was
concentrated on identifying the portion(s) of the contact line where the contact-angle
hysteresis condition is first violated, ie. the portion(s) of the contact line which
slide(s) first. To address this physical problem, we have employed our fully implicit
time-integration algorithm for interfacial dynamics in Stokes flow. Our method is
based on a mathematically rigorous combination of implicit schemes with our three-
dimensional Newton method (Dimitrakopoulos & Higdon 1998), and thus it has
strong stability properties which permit the use of large time steps.

Our study reveals that droplets with small and moderate initial angles show an early
period where both upstream and downstream sliding are equally favourable, as well as
a late downstream-favored period. By contrast, droplets with large initial angles, after
a rather small early equally-favourable period, show a large period where downstream
sliding is more favourable than upstream sliding. In addition, we show that due to
the surface tension force, droplets with intermediate initial angles are more stable
than droplets with small or large initial angles. Droplets with different viscosity ratio
show similar behaviour with respect to the onset of interfacial sliding. As the viscosity
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ratio increases from small values, the droplet shows a slower deformation rate but
a higher equilibrium interfacial deformation (if one exists) owing to the increased
hydrodynamic force. An asymptotic behaviour for very small or large viscosity ratios
is shown to exist.

Our study provides insight into interfacial sliding for several multiphase flow systems
including coating operations, enhanced oil recovery, microfluidics and biological
systems. The problem of contact-line motion is truly three-dimensional since the
contact line can expand or contract in the lateral (i.e. crossflow) direction changing
the interfacial dynamics, as shown in Dimitrakopoulos & Higdon (1998, 1999, 2001),
and the experiments of Podgorski, Flesselles & Limat (2001).
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