
ARTICLE IN PRESS
0955-7997/$ - se

doi:10.1016/j.en

�Correspond
E-mail addr
Engineering Analysis with Boundary Elements 31 (2007) 646–656

www.elsevier.com/locate/enganabound
A spectral boundary element algorithm for interfacial dynamics in
two-dimensional Stokes flow based on Hermitian interfacial smoothing

P. Dimitrakopoulos�, Jingtao Wang

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA

Received 13 February 2006; accepted 14 November 2006

Available online 2 January 2007
Abstract

A two-dimensional spectral boundary element algorithm for interfacial dynamics in Stokes flow is presented. The main attraction of

this approach is that it exploits all the benefits of the spectral methods with the versatility of the finite element method. In addition, it is

not affected by the disadvantage of the spectral methods used in volume discretization to create denser systems. To achieve continuity of

the interfacial geometry and its derivatives at the edges of the spectral elements during the droplet deformation, a suitable interfacial

smoothing is developed based on Hermitian-like interpolations. An adaptive mesh reconstructing procedure based on relevant lengths of

the spectral elements is also described.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of droplets and bubbles in infinite media
or in restricted geometries under viscous flows and/or
gravity is a problem of great technological and funda-
mental interest since it is encountered in a broad range of
industrial, natural and physiological processes. Industrial
applications include enhanced oil recovery, coating opera-
tions, vapor condensation, waste treatment, advanced
materials processing and microfluidic devices. Pharmaceu-
tical applications include emulsions which serve as a vehicle
for the transport of the medical agent to the skin. One
further application constitutes the blood flow in micro-
vessels.

Since the pioneering work of Youngren and Acrivos [1]
nearly 30 years ago, interfacial dynamics in Stokes flow via
the solution of boundary integral equations has developed
considerably. The main benefits of this approach are the
reduction of the problem dimensionality by one and the
great parallel scalability. A lot of research has been done to
determine and understand the deformation of droplets and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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bubbles in external flows, both in infinite media as well as
in constrained geometries [2–4]. Considerable progress has
also been made in the study of membrane-like interfaces
such as those in artificial capsules and biological cells [2,5].
During the last years the interaction of deformable
interfaces, e.g. suspensions of droplets, has received a lot
of interest [6]. The coming years are expected to witness a
growth in the application of interfacial boundary integral
solutions in flows in porous media, microfluidic devices
and physiological systems due to the increased interest in
small scales.
During the last 30 years, several numerical methodolo-

gies have been developed for the solution of the boundary
integral equations for interfacial dynamics based mainly on
low-order interpolation schemes, e.g. see [2,7–10]. In the
present paper we develop a high-order spectral boundary
element algorithm for interfacial dynamics in Stokes flow.
The main attraction of our algorithm is that it exploits all
the benefits of the spectral methods (i.e. exponential
convergence and numerical stability with increasing the
number of discretization points) while the utilization of
surface elements permits the study of the most complicated
geometries [11–13]. In addition, it is not affected by the
disadvantage of the spectral methods used in volume
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Fig. 1. Fluid droplet suspended in a surrounding fluid.
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discretization; namely, the requirement to deal with dense
systems, because in boundary integral formulations the
resulting systems are always dense, independent of the
form of the discretization. Our method also exploits all
the benefits of the boundary element techniques, i.e.
reduction of the problem dimensionality and great parallel
scalability.

We emphasize that robust spectral boundary element
algorithms have been developed for the study of fixed
boundary surfaces [14,15], particulate flows [16], and
equilibrium interfaces under steady flows [17,18]. There-
fore, with the present algorithm we seek to extend the
spectral boundary element formulation to the problem of
interfacial dynamic evolution.

After the mathematical formulation in Section 2, in
Section 3 we present the spectral interfacial discretization.
By applying a time advancing scheme, the resulting
algorithm is numerically unstable due to geometric
discontinuities at the edges of the spectral elements. To
avoid the growth of these numerical discrepancies, in
Section 4 we develop a suitable interfacial smoothing based
on Hermitian-like interpolations which preserves the
continuity of the interfacial geometry and its derivatives
at the edges of the spectral elements during the droplet
deformation. In Section 5 we present the convergence in
the numerical accuracy as the number of the employed
spectral points increases for the interfacial curvature and
for the dynamic evolution of the interfacial shape. An
adaptive mesh reconstructing procedure based on relevant
lengths of the spectral elements is also described.

In the current paper we present our algorithm for two-
dimensional flows. This algorithm can be employed for the
study of physical problems which are by nature two-
dimensional, i.e. deformation of films and (long) cylindrical
fluid volumes [19,20]. It can also be employed to investigate
extensively the influence of the length and width of
associated three-dimensional problems (even though it
cannot investigate the influence of the problem depth). The
methodologies presented here can be extended in three-
dimensional flows in a straightforward, though non-trivial,
manner.
2. Mathematical formulation

We consider a two-dimensional droplet suspended in an
infinite fluid as illustrated in Fig. 1. The droplet size is
specified by its volume V or equivalently by the radius a of
a circular droplet of volume pa2 ¼ V . The droplet (fluid 1)
has density r1 and viscosity lm, while the surrounding fluid
has density r2 and viscosity m. The gravitational accelera-
tion is g while the surface tension g is assumed constant.
The undisturbed flow exterior to the droplet is u1, e.g. an
extensional flow u1 ¼ Gðx;�yÞ or a simple shear flow
u1 ¼ Gðy; 0Þ, where G is the shear rate. In this study, the
characteristic length a is used as the length scale while the
time is scaled with the flow time scale G�1.
The capillary number Ca and Bond number Bd are
defined by

Ca ¼
mGa

g
; Bd ¼

ðr1 � r2Þga2

g
. (1)

These dimensionless parameters represent the ratio of
viscous flow forces and gravitational forces to interfacial
forces, respectively.
The governing equations in fluid 2 are the Stokes

equations together with continuity

=.r ¼ �=pþ mr2u ¼ 0, (2)

=.u ¼ 0 (3)

while in the droplet, the same equations apply with the
viscosity replaced by lm.
At the interface, the boundary conditions on the velocity

u and surface stress f are

u1 ¼ u2, (4)

Df ¼ f 2 � f 1 ¼ gð=.nÞnþ ðr2 � r1Þðg.xÞn. (5)

Here, the subscripts designate quantities evaluated in fluids
1 and 2, respectively. The surface stress is defined as f ¼
r.n where n is the unit normal which we choose to point
into fluid 2. The pressure as defined in r is the dynamic
pressure; hence the gravity force is absent from Eq. (2)
and appears in the interfacial stress boundary condition,
Eq. (5).
The velocity at a point x0 on the droplet surface SB may

be described by the boundary integral equation

ð1þ lÞuðx0Þ � 2u1ðx0Þ

¼ �
1

2pm

Z
SB

½S � Df � ð1� lÞmT � u � n�dS, ð6Þ

where Sij is the fundamental solution for the two-
dimensional Stokes equations and Tijk the associated stress
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defined by

Sij ¼ �dij ln rþ
x̂ix̂j

r2
; Tijk ¼ �4

x̂ix̂j x̂k

r4
, (7)

where x̂ ¼ x� x0 and r ¼ jx̂j [21,22]. Similar equations
hold in the presence of solid boundaries and for drop
suspensions [6,17].

Although the governing equations and boundary condi-
tions are linear in u and f , the problem of determining the
dynamic droplet shape constitutes a non-linear problem,
i.e. the velocity u, stress f and curvature =.n are non-linear
functions of the geometrical variables describing the
interface shape.

3. Numerical method

3.1. Spectral boundary discretization

The numerical solution of the boundary integral
equation, Eq. (6), is achieved through an extension of the
spectral boundary element method for fixed surfaces
discussed in Refs. [14,15]. The initial interface is divided
into a moderate number NE of elements as shown in Fig. 2.
The geometric variables on each element are discretized
using Lagrangian interpolation in terms of a parametric
variable x on the interval ½�1; 1�, e.g.

xðxÞ ¼
XNB

i¼1

xðxiÞ hiðxÞ, (8)

where hi is the (NB � 1)-order Lagrangian interpolant
polynomial. The physical variables u and f are represented
similarly. The base points xi for the interpolation are
chosen as the zeros of NB-order orthogonal polynomials;
this yields the spectral convergence associated with the
orthogonal polynomial expansion. The spectral element
method may employ either basis points in the interior of
-1.5

0

1

-0.5 0 1 2

Y

X

1.5

0.5

-0.5

-2 -1.5 -1 0.5 1.5

-1

Fig. 2. Spectral boundary element discretization of a circular droplet into

NE ¼ 12 equal-size elements. On each spectral element, NB ¼ 10

Gauss–Chebyshev basis points are defined.
the elements, i.e. Gauss-type points, or interior points
along with the end points on each element, i.e. Gauss–
Lobatto points.
The Gauss-type points may be derived from the Jacobi

polynomials defined by

P
ða;bÞ
N ðxÞ ¼

1

2N

XN

m¼0

N þ a

m

� �
N þ b

N �m

� �
ðx� 1Þmðxþ 1ÞN�m,

(9)

where the constants a and b are greater than �1 [11,23].
Different values of a and b yield diverse orthogonal
polynomials, e.g. a ¼ b ¼ 0 yields the Legendre polyno-
mials while a ¼ b ¼ �1

2
produces the Chebyshev polyno-

mials. Note that equal values of the two parameters, a and
b, result in points symmetric around zero in the interval
½�1; 1�. As the value of a ¼ b approaches �1, the roots are
closer to the ends of the interval; larger values produce
roots closer to the center of the interval ½�1; 1� (see Fig. 3).
Thus, by choosing different values of a ¼ b we can change
the distribution of the basis points. This distribution can
also be controlled by employing appropriate stretching
functions. Similarly to the interior Gauss Jacobi points,
Gauss–Lobatto Jacobi points can also be derived which
include the end points (�1); the distribution of the interior
points is again controlled by the associated parameters
a and b.
The discretized expressions for the geometry and the

physical variables are substituted into the boundary
integral equations yielding a linear system of algebraic
equations u ¼ Af þ Bu. The system matrices A and B are
defined as integrals of the kernels S and T and the basis
functions over the set of the surface elements. The
numerical integration is performed by Gauss–Legendre
quadrature with the aid of variable transformations as
described in Ref. [14]. We emphasize that to achieve the
accuracy reported in this paper, the integration error
0 1
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Fig. 3. The distribution in ½�1; 1� of NB ¼ 10 roots of Jacobi polynomials

for a ¼ b ¼ �0:99;�0:5; 0; 2; 20.



ARTICLE IN PRESS

-1

-0.5

0

1

0 1 2

Y

X

0

1

-0.5 0 1 2

Y

X

1.5

0.5

-1.5

-2 -1.5 -1 -0.5 0.5 1.5

1.5

0.5

-0.5

-1.5

-1

1.50.5-1-1.5-2

Fig. 4. Time evolution of a droplet in an extensional flow u1 ¼ G ðx;�yÞ

for Ca ¼ 0:175 and l ¼ 0:5. The initial circular interface at time t ¼ 0 is

divided into NE ¼ 12 equal-size spectral elements with NB ¼ 10 basis

points while the fourth-order Runge–Kutta scheme is used with

Dt ¼ 0:005. No interfacial smoothing is employed. The droplet shape is

shown for (a) time t ¼ 0:25 (i.e. time step Nstep ¼ 50), and (b) time t ¼ 0:6
or Nstep ¼ 120. The droplet initial shape is shown in Fig. 2.
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should be smaller than the error associated with the time
step and the spectral interpolation.

3.2. Explicit time-integration algorithm

In order to determine the shape of the drop as a function
of time, an explicit time-integration algorithm is employed
to solve the kinematic condition at the interface

dx

dt
¼ ðu.nÞnþUtt, (10)

where the first term at the right-hand side denotes the
contribution of the normal interfacial velocity while the
second term denotes the contribution of some velocity
tangential to the interface. (Note that t is the unit tangent
vector to the interface.) The interfacial shape is dictated by
the normal interfacial velocity; the tangential velocity Ut

may be employed to produce a more even distribution of
the spectral points as the interface deforms with time. In
this study, we usually employ the tangential velocity Ut ¼

ctðu.tÞ with 0:3octo1 far from equilibrium; close to
equilibrium we set ct ¼ 0.

The time step Dt should be sufficiently small to ensure
numerical stability, the well-known Courant condition
which in dimensionless form may be written as

DtoOðCaDxminÞ, (11)

where Dxmin is the minimum grid spacing [7–10]. We
emphasize that the Courant condition is associated with
the explicit nature of the time integration and thus it is
independent of the type of the interfacial discretization. In
our studies we usually employ high-order time-integration
schemes (e.g. the fourth-order Runge–Kutta method) so
that the numerical error associated with the time integra-
tion is small enough, i.e. at the same order as the error due
to the spectral discretization.

If we apply the advancing scheme described above
without any (additional) geometric constraints, the result-
ing algorithm is unstable as shown in Fig. 4 for a droplet
under extensional flow with Ca ¼ 0:175 and l ¼ 0:5. The
numerical instability is caused by the discontinuities at the
edges of the spectral elements as shown in Fig. 4(b), i.e.
discontinuities of the geometry (i.e. position) and its
derivatives (i.e. tangent and normal vectors, and curva-
ture). In particular, starting from an initial smoothed
interfacial shape, the geometry and its derivatives, derived
by the time integration of Eq. (10) above, show discre-
pancies at the edges of the spectral elements. These
discrepancies are caused by differences in the numerical
accuracy across neighbor spectral elements and thus
they are very small after one or a few time steps but
may grow substantially with time if left unattended. To
avoid the growth of the numerical discrepancies at the
edges of the spectral elements, we smooth the interfacial
geometry at the end of each time step as discussed in the
next session.
4. Interfacial smoothing

4.1. First-order smoothing scheme

Our first-order smoothing scheme eliminates the dis-
crepancy in the position, the tangent and normal vectors at
the edges across neighbor spectral elements appearing
during the interfacial deformation. The smoothing process
involves two stages: first we smooth the geometry and its
first derivatives at the element edges, and then we update
the position of all points on each spectral element by
employing a suitable Hermitian interpolation.
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Fig. 5. Time evolution of a droplet in an extensional flow for the same

parameters as in Fig. 4 except than now interfacial smoothing is employed

after each time step. The droplet shape corresponds to time t ¼ 0:6. The
drop interface is continuous across the spectral elements at all times.
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Let the non-smoothed interfacial shape at time tþ Dt,
derived by the time integration of Eq. (10) above, be
identified as xold ðxÞ where x is the parametric variable
describing the interface. To perform the interfacial smooth-
ing, we first average the position x of the edge points across
neighbor elements, e.g.

xnew
a ¼ xnew

b ¼
ðxold

a þ xold
b Þ

2
(12)

(where the subscripts a and b denote neighbor elements).
The next step is to achieve continuity of the tangent vector
t ¼ ðdx=dxÞ=jdx=dxj at the edges of the spectral elements.
To achieve this we first average the tangent vector at the
edges of neighbor elements, e.g.

tnew
a ¼ tnew

b ¼
ðtold

a þ told
b Þ

2
. (13)

The new tangent vector is also normalized so that
jtnewj ¼ 1.

Both the position and the tangent vector at the edge
points are now continuous across the elements. The
updated derivative ðdx=dxÞnew at the end points of each
spectral element is determined by

dx

dx

� �new

¼
dx

dx

����
����
old

tnew. (14)

At this point, we want to employ this updated
information at the edge points to derive a smoothed
interfacial shape. To achieve this goal, we employ a
suitable Hermitian interpolation which utilizes function
and first derivative values at the end points but
only function values at the interior points developed in
Ref. [24]

f ðxÞ ¼ ðx2 � 1Þ2
XM
i¼1

1

ðx2
i � 1Þ2

YM
jai

x� xj

xi � xj

� �
f ðxiÞ

þ
YM
j¼1

x� xj

�1� xj

� �
ðx� 1Þ2

4
ðxþ 1Þf 0ð�1Þ

þ
YM
j¼1

x� xj

1� xj

� �
ðxþ 1Þ2

4
ðx� 1Þf 0ðþ1Þ

þ
YM
j¼1

x� xj

�1� xj

� �
ðx� 1Þ2

4
½1þ bð�1Þðxþ 1Þ�f ð�1Þ

þ
YM
j¼1

x� xj

1� xj

� �
ðxþ 1Þ2

4
½1� bðþ1Þðx� 1Þ�f ðþ1Þ.

ð15Þ

The function values f ð�1Þ and the first derivatives f 0ð�1Þ
correspond to the smoothed position x and the updated
ðdx=dxÞ of the edge points, respectively. The coeffi-
cients bð�1Þ and bðþ1Þ are chosen to yield zero slope at the
element edges,

bð�1Þ ¼ �
XM
j¼1

1

x� xj

� �
þ

2

x� 1

" #
x¼�1

¼
XM
j¼1

1

1þ xj

� �
þ 1, ð16Þ

bðþ1Þ ¼ þ
XM
j¼1

1

x� xj

� �
þ

2

xþ 1

" #
x¼þ1

¼
XM
j¼1

1

1� xj

� �
þ 1. ð17Þ

To preserve the degrees of freedom of our spectral
discretization, on each spectral element we determine
ðNB � 4Þ interior Jacobi points from the existing NB

spectral points by typical Lagrangian interpolation. We
emphasize that the position and the first derivative at the
two end points of each element count for the missing four
degrees of freedom.
By combining these interior Jacobi points with the

smoothed position x and the first-order derivatives ðdx=dxÞ
at the edge points, the Hermitian interpolation, Eq. (15), is
employed on each spectral element (with M ¼ NB � 4) to
produce a new set of NB spectral points which represents
the final smoothed interfacial shape at time tþ Dt.
In Fig. 5 we show the time evolution of the droplet

presented earlier in Fig. 4 after we employ our first-order
smoothing scheme. In contrast to Fig. 4, the drop interface
is now continuous across the spectral elements at all times
(e.g. well past equilibrium where we terminated our
computations).
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4.2. Second-order smoothing scheme

We have also developed a second-order smoothing
scheme which achieves continuity of the position, tan-
gent/normal vector and curvature at the edges of the
spectral elements to account for the possibility that the
curvature continuity is required explicitly. The second-
order smoothing is based on a new Hermitian interpolation
which employs the function values at the end points along
with their first and second derivatives but only function
values at the interior points, i.e.

ðxÞ ¼ ðx2 � 1Þ3
XM
i¼1

1

ðx2
i � 1Þ3

YM
jai

x� xj

xi � xj

� �
f ðxiÞ

þ
YM
j¼1

x� xj

�1� xj

� �
ðx� 1Þ3

�8

ðxþ 1Þ2

2
f 00ð�1Þ

þ
YM
j¼1

x� xj

1� xj

� �
ðxþ 1Þ3

8

ðx� 1Þ2

2
f 00ðþ1Þ

þ
YM
j¼1

x� xj

�1� xj

� �
ðx� 1Þ3

�8
ðxþ 1Þ½1þ bð�1Þðxþ 1Þ�f 0ð�1Þ

þ
YM
j¼1

x� xj

1� xj

� �
ðxþ 1Þ3

8
ðx� 1Þ½1� bðþ1Þðx� 1Þ�f 0ðþ1Þ

þ
YM
j¼1

x� xj

�1� xj

� �
ðx� 1Þ3

�8
½1þ bð�1Þðxþ 1Þ

þ dð�1Þðxþ 1Þ2�f ð�1Þ

þ
YM
j¼1

x� xj

1� xj

� �
ðxþ 1Þ3

8
½1� bðþ1Þðx� 1Þ

þ dðþ1Þðx� 1Þ2�f ðþ1Þ, ð18Þ

where the coefficients bð�1Þ, bðþ1Þ, dð�1Þ and d ðþ1Þ are chosen
to satisfy the conditions at the end points,

bð�1Þ ¼
XM
j¼1

1

1þ xj

� �
þ

3

2
, ð19Þ

bðþ1Þ ¼
XM
j¼1

1

1� xj

� �
þ

3

2
, ð20Þ

d ð�1Þ ¼ b2
ð�1Þ �

3

2
bð�1Þ

�
1

2

XM
j¼1

XM
k¼1;kaj

1

ð1þ xjÞð1þ xkÞ
þ

3

2
, ð21Þ

d ðþ1Þ ¼ b2
ðþ1Þ �

3

2
bðþ1Þ

�
1

2

XM
j¼1

XM
k¼1;kaj

1

ð1� xjÞð1� xkÞ
þ

3

2
. ð22Þ

In particular, bð�1Þ (or bðþ1Þ) ensures that the coefficient of
f 0ð�1Þ (or f 0ðþ1Þ) is one for the first derivative of f ðxÞ and
zero for the second derivative when x equals to �1 (or +1).
On the other hand, d ð�1Þ (or d ðþ1Þ) ensure that the terms
containing f ð�1Þ (or f ðþ1Þ) disappear for both the first and
the second derivative of f ðxÞ when x equals to �1 (or +1).
The procedure for the second-order smoothing is the
following.
�
 The position, tangent vector and curvature at the edge
of neighbor elements are averaged. The averaged
tangent vector and curvature are used to calculate the
first and second derivatives, ðdx=dxÞ and ðd2x=dx2Þ, at
the end points.

�
 To preserve the degrees of freedom of our spectral

discretization, on each spectral element we determine
ðNB � 6Þ interior Jacobi points from the existing NB

spectral points by typical Lagrangian interpolation. We
emphasize that the position, first and second derivative
at the two end points of each element count for the
missing six degrees of freedom.

�
 By combining these interior Jacobi points with the

smoothed position x and the first and second deriva-
tives, ðdx=dxÞ and ðd2x=dx2Þ, at the edge points, the
Hermitian interpolation, Eq. (18), is employed on each
spectral element (with M ¼ NB � 6) to produce a new
set of NB spectral points which represents the final
smoothed interfacial shape at time tþ Dt.

4.3. Overview of interfacial smoothing

Starting from an initial smoothed interfacial shape, the
geometry derived by the time integration of Eq. (10) above
shows discrepancies at the edges of the spectral elements,
i.e. discontinuities of the geometry (i.e. position) and its
derivatives (i.e. tangent and normal vectors, and curva-
ture). (We note that physical variables which depend on
these geometric variables, e.g. surface stress jump, also
show discontinuities at the element edges.) These discre-
pancies are caused by differences in the numerical accuracy
across neighbor spectral elements and thus they are very
small after one or a few time steps but may grow
substantially with time if left unattended.
We emphasize that these geometric discontinuities at the

element edges appear even when Gauss–Lobatto points are
employed on the spectral elements. In this case while the
geometry may be continuous at the element edges (if
adjacent elements share their end points), the geometric
derivatives (e.g. tangent and normal vectors, and curva-
ture) still show discontinuity at the elements ends.
To avoid the growth of the numerical discrepancies at

the edges of the spectral elements, we smooth the
interfacial geometry at the end of each time step. We
emphasize that if the interfacial shape is smooth at a given
time, the discrepancies at the edges of the spectral elements
after the time integration of Eq. (10) are very small; thus by
applying our interfacial smoothing at the end of each time
step the perturbation of the interfacial geometry is very
small and thus it is not expected to smooth out any
physical meaningful modes. For the same reason, the
interfacial smoothing does not destroy the spectral
accuracy discussed in Section 5.1.
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We first apply our first-order smoothing scheme; thus we
formally achieve continuity of the position and the tangent
vector (and thus the normal vector) at the edges of the
spectral elements. For many problems we have studied so
far, at both subcritical and supercritical capillary numbers,
our numerical results reveal that this technique usually
achieves satisfactory continuity of the curvature at the
element edges, i.e. continuity of the second derivative of the
interfacial geometry. However, if the first-order scheme
fails to produce continuous interfacial curvature at some
time instant, our algorithm applies the second-order
smoothing scheme.

To see how well the interfacial continuity is satisfied,
after the application of the smoothing scheme at the end of
each time step, we monitor the tangent vector and the
curvature at the edges of neighbor elements. For example,
for the interfacial shape shown in Fig. 7(b), the tangent
vectors evaluated at the edges of neighbor elements show
identical value to the double precision accuracy, i.e.
Oð10�14Þ due to the first-order smoothing scheme. The
interfacial curvature also shows a very small difference
across neighbor elements; for NB ¼ 12 the curvature
difference is Oð10�9Þ and thus it is much smaller than the
accuracy in calculating the interfacial deformation, i.e.
Oð10�3Þ as shown in Fig. 7(b). (Observe that the curvature
shows a rather large variation along the interfacial shape.)

This conclusion may seem to contradict the experience
based on low-order interpolation algorithms where to
achieve continuity of the interfacial curvature, one may
need to employ an interpolation which formally preserves
the continuity of both first and second derivatives of the
interfacial shape (e.g. spline interpolation). The difference
lies on the fact that in our case, each spectral element
covers a large portion of the interfacial area where the
spectral interpolation produces smooth distribution of high
derivatives of the interfacial geometry. In this case, by
smoothing only the position and its first derivative at the
element edges, we also achieve smoothing of higher
derivatives of the interfacial shape.

By implementing the smoothing scheme after we
determine the (temporary) interfacial shape at the desired
time tþ Dt, we have the advantage of avoiding incorpor-
ating a smoothing technique (e.g. the Hermitian interpola-
tion) inside the spectral element algorithm for the solution
of the corresponding boundary integral equation. In
addition, we have the ability to re-implement the interfacial
smoothing (without having to solve again a boundary
integral system) if for some reason a given smoothing
scheme fails. (As mentioned above, our algorithm applies
the second-order smoothing scheme if the first-order
scheme fails to produce continuous interfacial curvature
at some time instant.)

As a closure to this section, we emphasize that the
smoothing methodology we have developed is an efficient
technique to preserve the continuity of the interfacial
spectral geometry and its derivatives. The entire process,
including the relevant Hermitian interpolation, requires a
computational cost of only OðNÞ where N ¼ NE NB is the
total number of spectral points on the drop. Since in these
interpolations we employ high-order orthogonal polyno-
mials, the loss of accuracy from one to the other
discretization is negligible. Most importantly, our smooth-
ing methodology preserves the main characteristic of the
spectral methods, i.e. the exponential convergence in the
interfacial accuracy with increasing the number of spectral
points N as discussed in Section 5.1 below.

5. Properties of interfacial algorithm

In this section we present the properties of our spectral
boundary element algorithm at both small and large
deformations under two characteristic flows, i.e. exten-
sional and simple shear flow. The results presented below
are valid for a droplet suspended in an infinite fluid with
(the non-trivial) viscosity ratio l ¼ 0:5 and for Bond
number Bd ¼ 0. Note that gravitational effects may be
studied easily via the interfacial condition, Eq. (5) above.
We emphasize that, in all cases under flow conditions

presented in this paper, the initial shape at time t ¼ 0
corresponds to a circular droplet, i.e. we consider the
problem where a steady flow is introduced into the system
for all times t40. Our preference is to discretize this
circular shape into equal-size spectral elements. Note that a
higher accuracy may be achieved if we define smaller
elements in the portions of the initial interface expected to
show a higher deformation under flow conditions. In this
study we avoid this so that our results represent the general
case where the interfacial deformation is not known (or
cannot be predicted) in advance. In all cases we employ the
fourth-order Runge–Kutta method. In most of the cases
reported below, the same accuracy may be achieved with a
lower order method, e.g. the second or third-order
Runge–Kutta scheme; this depends on the employed time
step and the error associated with the spectral discretiza-
tion. To facilitate the reading of the paper, some
information on the numerical parameters employed for
the results presented below has been included in the figures’
captions.
Beyond the examples discussed below, the accuracy and

correctness of our algorithm was verified by comparing our
results with the analytical predictions of Richardson for
l ¼ 0 [25], and the analytical solution of Bilby and
Kolbuszewski [26] for simple shear flow with g ¼ 0 and
several viscosities ratios. In addition, our results for the
steady-state shape of droplets in different flows and for
several viscosity ratios were in excellent agreement with the
results of our Newton method for equilibrium interfaces
under flow conditions [17].

5.1. Convergence: curvature and deformation

The exponential convergence in the numerical accuracy
as the number of the employed spectral points N ¼ NE NB

increases is clearly evident at the geometric properties of a
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given shape. Fig. 6 shows the maximum absolute error in
the computed curvature as the number of spectral points N

increases from 18 to 78, for a circular droplet as well as an
ellipsoidal droplet with axes ratio 1:0.4. The spectral
convergence is evident in the reduction of the maximum
error from �10�1 for N ¼ 18 to o10�11 for N ¼ 78, i.e. a
four-fold increase in the number of spectral points results
in a 10�10 error reduction. This rapid reduction is in direct
contrast to the common linear or quadratic convergence
associated with low-order interpolation algorithms [7,10].

The exponential convergence in the numerical accuracy
is also evident for the dynamic evolution of the interfacial
shape. To determine the droplet deformation with time we
monitor the droplet’s longest and shortest semi-axes, L and
S, respectively, as well as Taylor’s deformation parameter

D ¼
L� S

Lþ S
. (23)

These semi-axes are determined as the maximum and
minimum distance from the droplet’s centroid to the
interface by employing a Newton method for the optimiza-
tion problems.

Fig. 7(a) shows the convergence in the numerical
accuracy of calculating the deformation parameter D for
a relatively moderate deformation for a droplet with l ¼
0:5 and Ca ¼ 0:15 at time t ¼ 0:5. Observe that by utilizing
the interfacial tangential velocity Ut ¼ 0:5ðu.tÞ the accu-
racy is improved by one order of magnitude. The
convergence of our algorithm at large deformations is
shown in Fig. 7(b) for a droplet with l ¼ 0:5 and Ca ¼ 0:25
at time t ¼ 1:5. These conditions correspond to super-
critical deformation of an elongated droplet shape with
ratio length over width L=S � 1:95=0:477 � 4:09. We note
that for both capillary numbers the rapid convergence in
the numerical accuracy as the number of spectral points
increases can be approximated with a straight line in the
log-linear plot, and thus our algorithm shows the expected
exponential convergence due to the spectral interpolation.

5.2. Small and moderate deformations

We have performed extensive tests of our spectral
algorithm by studying the dynamic evolution of droplets
and bubbles in different flows and for a wide range of the
parameter space, i.e. capillary number and viscosity ratio.
As an example in Fig. 8 we present the time evolution
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of the interfacial shape of a droplet with l ¼ 0:5 and Ca ¼

0:175 in extensional and simple shear flow. These
parameters correspond to subcritical conditions: as the
time increases the droplet deformation increases while the
interfacial normal velocity u � n diminishes until the droplet
reaches equilibrium. (The evolution of D and u � n for a
droplet with Ca ¼ 0:175 in an extensional flow can be seen
in Fig. 9.)

We have also studied the droplet evolution near the
critical conditions, i.e. near the flow rate at which
equilibrium interfacial shapes cease to exist. Fig. 9(a)
shows the time evolution of the interfacial normal velocity
of a droplet with l ¼ 0:5 for both subcritical and super-
critical capillary numbers Ca. In the former case, the
interfacial normal velocity diminishes as the droplet
reaches equilibrium; in the latter case, after an initial
reduction, u � n increases as the droplet continues to
elongate. Fig. 9(b) shows u � n versus deformation D. This
figure reveals that the minimum normal velocity occurs at
about the same value of D for the different capillary
numbers Ca. The critical capillary number can also be
identified as the value Ca � 0:195.

5.3. Large deformations: adaptive mesh reconstruction

For supercritical conditions, the droplet may elongate
significantly; thus the original spectral discretization
fNE ;NBg may not be sufficient to describe a very deformed
interfacial shape. To resolve this issue, one may change one
or both of the discretization parameters of the spectral
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boundary elements, i.e. NE and NB. In the current
implementation of our algorithm, it is more efficient to
change only the number of elements. In particular, when
the relevant length of a spectral element is increased above
a prescribed maximum limit, the element is divided into
two halves; on each one NB basis points are defined. The
opposite happens when the relevant length of a spectral
element is decreased below a prescribed minimum limit; in
this case the element is combined with its neighbor while
NB new basis points are defined on the resulting element.
The employed time step Dt is accordingly adjusted to
satisfy the Courant condition, Eq. (11).

The goal of our adaptive mesh reconstruction is to
produce a reasonable spectral element discretization of the
interfacial shape with respect to the element’s arc length
and/or the variation of curvature on it. Thus, as relevant
length of a spectral element is regarded its arc length L1 or
its curvature length L2,

L1 ¼

Z
elem

dS; L2 ¼ Rref

Z
elem

j= � njdS, (24)

where Rref is some reference radius of curvature. For
problems involving surfaces in close contact, another
relevant length can be considered associated with the
surfaces’ gap [27]. Thus our adaptive mesh procedure is
similar to the ones employed in low-order algorithms, e.g.
[27,28]. A difference is that our procedure is based on the
size of the spectral elements, and not of successive grid
points; thus it requires a smaller number of comparisons
and decision making operations (i.e. divide, unite or no
change).

We note that in the current implementation, when two
successive elements merge, the common end point corre-
sponds to the parametric variable x ¼ 0 on the resulting
element. This produces a reasonable distribution of the
spectral points on the new element when the arc length or
curvature length of the two elements does not differ
substantially; our numerical tests also show that this
merging works very well even in the opposite case.
(Moreover, merging based on the elements’ arc length or
curvature length can easily be implemented, if needed.)

This strategy has been employed to determine large
deformations of droplets in supercritical conditions in
extensional flow. Fig. 10 shows the time evolution of the
interfacial shape for l ¼ 0:5 and Ca ¼ 0:25. Note that the
initial circular shape is discretized into NE ¼ 6 equal-size
spectral elements while as the drop deformation increases
more elements are employed. At time t ¼ 4:5 a long neck
has been created as shown in Fig. 10(b); the ratio of length
over the droplet width is now L=S � 10:08=1:85 � 5:4 and
NE ¼ 12 spectral elements are employed. At time t ¼ 5:9
the neck has become a very thin thread and NE ¼ 28
spectral elements are used as shown in Fig. 10(c).

Fig. 11(a) shows the relaxation of the droplet shape
following a strong extensional flow. As the droplet
deformation decreases towards the equilibrium circular
shape, the number of spectral elements employed is also
decreased. The relaxation of the droplet follows a different
dynamic evolution compared to the associated drop
extension as the dynamic evolution of the length L and
width S of the droplet reveal in Fig. 11(b). Our two-
dimensional results are in qualitative agreement with the
experimental findings of Ha and Leal [29], which shows
that our methodology may be employed to investigate
extensively the influence of the length and width of
associated three-dimensional problems.

6. Conclusions

In this paper we have described a spectral boundary
integral approach for interfacial dynamics in Stokes flow.
To preserve the continuity of the interfacial geometry and
its derivatives at the edges of the spectral elements during
the droplet deformation, a suitable interfacial smoothing
based on Hermitian-like interpolations was developed. Our
smoothing methodology preserves the main characteristic
of the spectral methods, i.e. the exponential convergence in
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the interfacial accuracy as the number of spectral points
increases. An adaptive mesh reconstructing procedure
based on relevant lengths of the spectral elements has also
been described and its applicability to very thin interfacial
necks has been demonstrated. Therefore, the current
methodology can be employed for a wide range of
interfacial problems in porous media, microfluidic devices
and physiological systems.
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