Chapra
 Applied Numerical Methods with MATLAB for Engineers and Scientists, $3^{\text {rd }}$ Ed. Errata: November 3, 2011

Errata for first printing:

p. 46; Prob. 2.15: First line after equation should read:

Use MATLAB to create a plot of the cosine (solid line) along...
p. 70; First line of code should read:
\% create animation with getframe and movie
p. 85; Prob. 3.12: Second line within loop should read
$y(i)=12+6$ *cos(2*pi*t(i)/ ...
p. 86; Prob. 3.14: Second part of piecewise function should be
$624-3 t \quad 8 \leq t \leq 16$
p. 161; The first two MATLAB commands used to set up the function and its derivative should have " m " enclosed in parentheses as:

```
>> y = @(m) sqrt (9.81*m/0.25)*tanh(sqrt (9.81*0.25/m)*4)-36;
```


p. 178; Prob. 6.4d: Change "five iterations" to "three iterations."
p. 191; The third MATLAB commands used to invoke the goldmin function and should be changed to
>> [xmin,fmin,ea] $=\operatorname{goldmin}(z, 0,8)$
p. 203; Fig. P7.33: Labels for Lift and Friction should be switched.
p. 300; First line of code at top of page should be changed to

```
>> format short e, x0 = [3; 3];
```

p. 318; Prob. 13.11: Solution equation should add subscript lower case italic i to the c as shown below:

$$
y_{i}=c_{i} e^{\lambda t}
$$

p. 349; Change MATLAB commands at top of page to

```
>> x = [10 20 30 40 50 60 70 80];
>> Y = [l25 70 380 550 610 1220 830 1450];
>> [a,r2] = linregr(x,y)
a =
19.4702 -234.2857
r2 =
0.8805
```

Change MATLAB commands at bottom of page to

```
>> [a,r2] = linregr(log10(x),log10(y))
```

a $=$
$1.9842-0.5620$
r2 =
0.9481
p. 357; Prob. 4.16: Add the following:

Test it for the data from Examples 14.2 and 14.3.
p. 359; Prob. 14.30: Change the last line in the problem statement to:

Use your result to determine the shear stress ($\boldsymbol{\mu d u} / \boldsymbol{d y}$) at the surface where $\boldsymbol{\mu}=\mathbf{1 . 8 \times 1 0 ^ { - 5 }}$ $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$.
p. 376; Prob. 15.10: After equation, should read:

Use general linear least-squares to estimate the initial concentration of each organism...
p. 377; Prob. 15.18: First line should read:
15.18 Use general linear least squares to find...
p. 379; Prob. 15.27: First line should read:
15.27 Use nonlinear regression and the following set of pressure-volume data to...
p. 402; First line in last paragraph of Case Study, change "Hz" to cycles/yr.
p. 427; Prob. 17.15: Change last line to:

Determine v at $T=\mathbf{4 0 0}^{\circ} \mathbf{C}$.
p. 542; Prob. 21.24: Change first temperature in Table from 19 to 20.2.
p. 544; Prob. 21.38: Change $\partial f /(\partial x \partial y)$ to $\partial^{2} f /(\partial x \partial y)$.
p. 578 ; Change first Lorenz equation to :

$$
\frac{d x}{d t}=-\sigma x+\sigma y
$$

p. 582; Change first MATLAB command to:
>> plot3(y(:,1),y(:,2),y(:,3))
p. 586; Prob. 22.18:

Second equation should be
$\frac{d C B_{1}}{d t}=-\frac{1}{\tau} C B_{1}+k C A_{1}$
Fourth equation should be
$\frac{d C B_{2}}{d t}=\frac{1}{\tau}\left(C B_{1}-C B_{2}\right)+k C A_{2}$
p. 587; Prob. 22.21: In Table, units of area should be $1 \mathbf{0}^{4} \mathrm{~m}^{2}$.
p. 615; Prob. 23.21. Change problem statement to:
23.21 Perform the same computations as in Prob. 23.20 but based on the first floor of the structure in Prob. 22.22.

Errata for second printing:

p. 17; Eq. 1.18: First C_{d} should be changed to c_{d} :
$c_{d}=\frac{1}{2} \rho A C_{d}$
p. 179; Prob. 6.16: Below equation, $L=5 \mathrm{~m}^{3}$ should be changed to $L=5 \mathrm{~m}$.
p. 180; Prob. 6.20: Units of k_{2} should be $\mathrm{g} /\left(\mathrm{s}^{2} \mathrm{~m}^{0.5}\right)$.
p. 379: Prob. 15.27: The beginning of the problem should read:
15.27 Employ nonlinear regression and the following set of pressure-volume data to...
p. 379: Prob. 15.28: The problem statement below the table should read:
15.27 Use nonlinear regression to estimate the initial population of each organism (A, B, \ldots
p. 397; Last line: Change 31.25 to 18.75
$y=5+\cos \left(2^{*} \mathrm{pi}^{*} 12.5^{*}\right.$ tspan $)+\sin \left(2^{*} \mathrm{pi}^{*} 18.75^{*}\right.$ tspan $)$;

